In machine-learning,
feature-screening aims at detecting and eliminating irrelevant
(non-predictive) features thus reducing the size of the underly-
ing optimization problem (here problem \eqref{eq:primal}). The general idea
is to compute for each value of the regularization parameter,
a relevance measure for each feature, which is then compared
with a threshold (produced by the screening procedure itself).
Features which fall short of this threshold are detected as
irrelevant and eliminated.
This post presents an overview of so-called dynamic screening
rules, a new generation of safe screening rules for the Lasso (and
related models like the Group-Lasso) which have appeared recently in
the literature (for example,
[Bonnefoy et al. 2014]). A particular emphasis is put on
the novel duality-gap-based screening rules due to
Gramfort and
co-authors.
We also present resent work on heuristc univariate screening
[Dohmatob et al. PRNI2015].
Notation
For a vector $v \in \mathbb{R}^p$, we recall the definition of its
- $l_1$-norm $\|v\|_1 := \sum_{1 \le j \le p}|v_j|$,
- $l_2$-norm $\|v\|_2 := (\sum_{1 \le j \le p}|v_j|^2)^{1/2}$, and
- $l_{\infty}$-norm $\|v\|_{\infty} := \max_{1 \le j \le p}|v_j|$.
The transpose of a matrix $A \in \mathbb{R}^{n \times p}$ is denoted
$A^T$. The $i$th row of $A$ is denoted $A_i$. The $j$th column of $A$
is the $j$th row of $A^T$, namely $A^T_j$. Finally, define the bracket
\begin{equation}
\left[a\right]_c^b := min(max(a, b), c)
\end{equation}
General considerations
Consider a Lasso model with response vector $y \in \mathbb{R}^p$ and
design matrix $X \in \mathbb{R}^{n \times p}$. Let $\lambda$
(with $0 < \lambda < \|X^Ty\|_{\infty}$) be the regularization
parameter. The primal objective to be minimized as a function of the
primal variable $\beta \in \mathbb{R}^p$ ($\beta$ is the vector of
regressor coefficients) is
\begin{eqnarray}
p_{\lambda}(\beta) := \frac{1}{2}\|X\beta - y\|^2_2 +
\lambda\|\beta\|_1
\label{eq:primal}
\end{eqnarray}
In the sense of Fenchel-Rockafellar, the dual objective to be
maximized as a function of the dual variable $\theta \in \mathbb{R}^n$
is
\begin{eqnarray}
d_{\lambda}(\theta) := \begin{cases}
\frac{1}{2}\|y\|^2_2 - \frac{\lambda^2}{2}\|\theta -
\frac{y}{\lambda}\|^2_2, &\mbox{if } \|X^T\theta\|_{\infty} \le 1\\
-\infty, &\mbox{otherwise}.
\end{cases}
\label{eq:dual}
\end{eqnarray}
Finally, the duality-gap $\delta_{\lambda}(\beta, \theta)$ at $(\beta,
\theta)$ is defined by
\begin{eqnarray}
\delta_{\lambda}(\beta, \theta) := p_{\lambda}(\beta) -
d_{\lambda}(\theta).
\label{eq:dgap}
\end{eqnarray}
One notes the following straightforward facts
- $\delta_{\lambda}(\beta, \theta) \ge 0$ with equality iff
$\beta$ minimizes \eqref{eq:primal} and $\theta$ maximizes
\eqref{eq:dual}. Such a primal-dual pair is called an
optimal pair.
The dual objective $d_{\lambda}$ defined in \eqref{eq:dual} has
a unique minimizer $\theta_{\lambda}^*$ which corresponds to the
euclidean projection of $y/\lambda$ onto the dual-feasible
polyhedron
\begin{eqnarray}
\mathcal{P} := \{\theta \in \mathbb{R}^n | \|X^T\theta\|_{\infty} \le
1\}.
\end{eqnarray}
Note that $\mathcal{P}$ is compact and convex.
Given an optimal primal-dual pair $(\beta^*_{\lambda},
\theta^*_{\lambda}) \in \mathbb{R}^p \times \mathcal{P}$, we have
the fundamental
safe (i.e screening rules which provably can't
mistakenly discard active features.) screening rule
\begin{eqnarray}
|X^T_j\theta^*_{\lambda}| < 1 \implies \beta_{\lambda,j}^* =
0\text{ (i.e the $j$th feature is irrelevant)}.
\label{eq:fundamental}
\end{eqnarray}
The inequality \eqref{eq:fundamental} allows the possibility to
envisage constructing safe screening rules as follows:
- Construct a ``small'' compact set $C \subseteq \mathbb{R}^n$,
containing the dual optimal point $\theta_{\lambda}^*$
with $C \cap \mathcal{P} \ne \emptyset$, such that the
value maximum value $m_{C,j} := \underset{\theta \in C}{max}\text{
}|X^T_j\theta|$ can be easily computed.
- Noting that $m_{C,j}$ is an upper bound for
$|X^T_j\theta^*_{\lambda}|$ in \eqref{eq:fundamental}, we may then
discard all features $j$ for which $m_{C,j} < 1$.
The rest of this manuscript overviews methods for effectively
realizing such a construction.
Safe sphere tests
We start with the following lemma which provides a useful formula
for the duality-gap $\delta_{\lambda}(\beta, \theta)$ defined in
\eqref{eq:dgap}.
For every $(\beta, \theta) \in \mathbb{R}^p \times \mathbb{R}^n$, we
have
\begin{eqnarray}
\delta_{\lambda}(\beta, \theta) = \begin{cases}
\frac{\lambda^2}{2}\left\|\theta -
(y-X\beta)/\lambda\right\|^2_2 + \lambda\left(\|\beta\|_1 -
\theta^TX\beta\right), &\mbox{if } \theta \in \mathcal{P}\\
+\infty, &\mbox{otherwise}.
\end{cases}
\label{eq:dgap_formula}
\end{eqnarray}
Expand the formula in \eqref{eq:dgap}, and then complete the square
w.r.t $\theta$.
Let $(\beta, \theta) \in \mathbb{R}^p \times \mathcal{P}$
be a feasible primal-dual pair. If $\theta_{\lambda}^*$ is an optimal
dual point (i.e maximizes the dual objective $p_{\lambda}$ defined in
\eqref{eq:dual}), then for every other dual point $\theta \in
\mathbb{R}^n$ it holds that
\begin{eqnarray}
\left\|\theta_{\lambda}^* -
(y-X\beta)/\lambda\right\|_2 \le
\sqrt{2\delta_{\lambda}(\beta, \theta)}/\lambda.
\label{eq:dual_sphere}
\end{eqnarray}
By the optimality of $\theta_{\lambda}^*$ for the ``marginal''
duality-gap function $\eta \mapsto \delta_{\lambda}(\beta, \eta)$, we
have
\begin{eqnarray}
\delta_{\lambda}(\beta, \theta_{\lambda}^*) \le
\delta_{\lambda}(\beta, \theta).
\label{eq:dgap_ineq}
\end{eqnarray}
Now observe that $\theta_{\lambda}^*$, being the projection of the point
$y/\lambda$ onto the dual-feasible polyhedron $\mathcal{P}$, lies on
the boundary of $\mathcal{P}$ because the latter doesn't contain
$y/\lambda$ since $\lambda < \|X^Ty\|_{\infty}$. Thus we have
$\|X^T\theta_{\lambda}^*\|_{\infty} = 1$, and by Holder's inequality
it follows that
\begin{eqnarray}
\|\beta\|_1 - \beta^TX^T\theta_{\lambda}^* =
\|\beta\|_1\|X^T\theta_{\lambda}^*\|_{\infty} -
\beta^TX^T\theta_{\lambda}^* \ge 0.
\label{eq:holder}
\end{eqnarray}
Finally, invoking formula \eqref{eq:dgap_formula} on the LHS of
\eqref{eq:dgap_ineq} and using \eqref{eq:holder} completes the proof.
Given a feasible primal-dual pair
$(\beta, \theta) \in \mathbb{R}^p \times \mathcal{P}$, the above theorem prescribes a trust-region for the optimal dual point
$\theta_{\lambda}^*$, namely the sphere $S_n(y - X\beta)/\lambda,
\sqrt{2\delta_{\lambda}(\beta, \theta)}/\lambda)$.
Static safe sphere test
Let's begin with the following elementary but important lemma about
the maximum value of the function $\theta \mapsto |b^T\theta|$ on
the sphere
\begin{eqnarray}
S_n(c,r) := \{\theta \in \mathbb{R}^n | \|\theta - c\|_2 \le r\},
\end{eqnarray}
of center $c \in \mathbb{R}^n$ and radius $r > 0$. Viz,
\begin{eqnarray}
\underset{\theta \in S_n(c, r)}{max}\text{ }|b^T\theta| = |b^Tc| +
r\|b\|_2.
\label{eq:max_sphere}
\end{eqnarray}
One has
\begin{eqnarray*}
\underset{\theta \in S_n(c, r)}{max}\text{ }b^T\theta =
\underset{\theta \in S_n(0, r)}{max}\text{ }b^T(\theta + c) = b^Tc +
r\underset{\theta \in S_n(0, 1)}{max}\text{ }b^T\theta = b^Tc +
r\|b\|_2.
\end{eqnarray*}
Replacing $b$ with $-b$ in the above equation yields
\begin{eqnarray*}
\underset{\theta \in S_n(c, r)}{max}-b^T\theta = -b^Tc +
r\|b\|_2.
\end{eqnarray*}
Now, combining both equations and using the fact that
\begin{eqnarray*}
|b^T\theta| \equiv max(b^T\theta, -b^T\theta),
\end{eqnarray*}
we obtain the desired result.
The following lemma is from
[Xiang et al. 2014].
Given a safe sphere $S_n(c, r)$ for the optimal dual point
$\theta_{\lambda}^*$, the following screening rule is safe
\begin{eqnarray}
\text{Discard the } j\text{th feature if }
|X_j^Tc| + r\|X_j^T\|_2 < 1.
\label{eq:sphere_test}
\end{eqnarray}
Direct application of \eqref{eq:fundamental} and
\eqref{eq:max_sphere}.
Using the trust-region \eqref{eq:dual_sphere} established in the previous theorem for the optimal dual variable
$\theta_{\lambda}^*$, namely the sphere $S_n\left((y-X\beta)/\lambda,
\sqrt{2\delta_{\lambda}(\beta,\theta)}/\lambda\right)$, we can
envisage to device a screening rule in the form
\eqref{eq:sphere_test}. Indeed,
For any primal-dual pair $(\beta,\theta) \in \mathbb{R}^p \times
\mathbb{R}^n$, the rule
\begin{eqnarray}
\text{Discard the } j\text{th feature if }
\left|X_j^T(y-X\beta)\right| +
\sqrt{2\delta_{\lambda}(\beta,\theta)}\|X_j^T\|_2 < \lambda
\label{eq:sphere_test_actual}
\end{eqnarray}
is safe.
Use the last lemma, on the safe sphere
$S_n\left((y-X\beta)/\lambda,
\sqrt{2\delta_{\lambda}(\beta,\theta)}/\lambda\right)$ obtained in
the previous theorem.
Dynamic safe sphere test
The results presented here are due to very recent work by Gramfort and
co-workers.
The screening rule in \eqref{eq:sphere_test_actual} only makes sense
(i.e there is any hope it could ever screen some features) only if
$\delta_{\lambda}(\beta,\theta) < +\infty$, i.e only if $\theta$ is
dual-feasible. In fact, the smaller the duality-gap
$\delta_{\lambda}(\beta,\theta)$, the more effective the screening
rule is. Thus we need a procedure which, given a primal point $\beta
\in \mathbb{R}^p$, generates a dual-feasible point $\theta$ for which
$\delta_{\lambda}(\beta,\theta)$ is as small as possible. As was first
mentioned in
[Bonnefoy et al. 2014], any iterative solver for
\eqref{eq:primal} can be used to produce a sequence of primal-dual
feasible pairs $(\beta^{(k)}, \theta^{(k)}) \in \mathbb{R}^p
\times \mathcal{P}$, and a decreasing sequence of safe spheres
$S_n\left(y / \lambda, \|\theta^{(k)} - y / \lambda\right\|_2)$. Indeed
for each primal iterate $\beta^{(k)}$, one finds a scalar $\mu^{(k)} \in
\mathbb{R}$ such that $\mu^{(k)} (y - X\beta^{(k)}) \in \mathcal{P}$ is the
dual-feasible point closest to $y / \lambda$. This sub-problem is a
simple minimization problem of quadratic function $\mu \mapsto
\|\mu(y-X\beta^{(k)}) - y / \lambda\|^2_2$ on a closed real interval
$\left[-\frac{1}{\|X^T(y - X\beta^{(k)})\|_{\infty}}, \frac{1}{\|X^T(y
- X\beta^{(k)})\|_{\infty}}\right]$, with an analytic solution
\begin{eqnarray}
\mu^{(k)} = \begin{cases}
\left[\frac{y^T(y-X\beta^{(k)})}{\lambda
\|y-X\beta^{(k)}\|_2^2}\right]^{-\frac{1}{\|X^T(y -
X\beta^{(k)})\|_{\infty}}}_{\frac{1}{\|X^T(y -
X\beta^{(k)})\|_{\infty}}}, &\mbox{if } X\beta^{(k)} \ne
y\\
1, &\mbox{otherwise}.
\end{cases}
\end{eqnarray}
The resulting algorithm ("Poorman's FISTA with dynamic screening") is depicted below.
- Input: $\lambda \in \text{ }]0, \|X^Ty\|_{\infty}[$ the regularization
parameter; $\epsilon > 0$ the desired precision on duality
gap.\\
- Initialize: $\beta^{(0)} \leftarrow 0 \in \mathbb{R}^p$,
$\theta^{(0)} \leftarrow y/\lambda \in \mathcal{P}$, $\delta^{(0)}
\leftarrow+\infty$, $t^{(0)} \leftarrow 1$, and $k \leftarrow 0$.
- Repeat (until $\delta^{(k)} < \epsilon$):
- $\beta^{(k + 1)} \leftarrow soft_{\lambda/L}(\eta^{(k)} - X^T(X\eta^{(k)} -
y)), \hspace{.5em}\theta^{(k+1)} \leftarrow \mu^{(k+1)}(y - X\beta^{(k+1)})$
- $t^{(k+1)} \leftarrow \frac{1 + \sqrt{4t^{(k)} +
1}}{2}, \hspace{.5em}\eta^{(k+1)} \leftarrow \beta^{(k+1)} +
\frac{t^{(k)} - 1}{t^{(k+1)}}(\beta^{(k+1)} - \beta^{(k)})$
- $\delta^{(k+1)} \leftarrow \frac{\lambda^2}{2}\left\|\theta^{(k+1)} -
(y-X\beta^{(k+1)})/\lambda\right\|^2_2 + \lambda\left(\|\beta^{(k+1)}\|_1 -
\theta^TX\beta^{(k + 1)}\right)$
- $X, \beta^{(k+1)}, \eta^{(k+1)} \leftarrow
screen(X,y,\beta^{(k+1)}, \eta^{(k+1)}, \delta^{(k+1)})$
- $k \leftarrow k + 1$
- Return $\beta^{(k)}$
Univariate (heuristic) screening for brain decoding problems
In
[Dohmatob et al. PRNI2015], we proposed (amongst other tricks) a univariate heuristic for detecting and disregarding irrelevant voxels in brain decoding problem (ssee figure above). This heuristic can result in upto 10-fold speedup over full-brain analysis. Get a quick overview
here.