Introduction: General considerations
![]() |
Example of bounded polyhedron, aka polytope |
We have the following useful characterization (see [section 2, Murota et al. 2013]): g is polyhedral iff there exists a matrix A = (a_i) \in \mathbb{R}^{m \times n} and a vector c = (c_i) \in \mathbb{R}^m s.t g(x) = \text{max}\{\langle a_i, x \rangle + c_i| 1 \le i \le m\}, \forall x \in dom(g). As usual, the set dom(g) := \{x \in \mathbb{R}^p | g(x) < +\infty\} is the effective domain of g, and is non-empty since g is proper, by assumption. Given a compact convex subset C \subseteq dom(g), let \mathrm{Opt}_C(g) \subseteq C be the set of minimizers of g on C. When there is no confusion about the set C, we will omit the subscript and simply write \mathrm{Opt}(g). Note that \mathrm{Opt}_C(g) is itself convex.
Minimax for matrix games and the weird inequality
It's not hard to see that the Nash equilibrium problem for a matrix game with payoff matrix A \in \mathbb{R}^{m \times n}\begin{eqnarray} \underset{x \in \Delta_m}{\text{minimize }}\underset{y \in \Delta_n}{\text{maximize }}\langle Ax, y\rangle \end{eqnarray}
can be written as
\begin{eqnarray} \underset{(x,y) \in \Delta_m \times \Delta_n}{\text{minimize }}G(x, y), \end{eqnarray}
where
\begin{eqnarray} \begin{split} G(x, y) & := \underset{v \in \Delta_n}{\text{max }}\langle Ax, v\rangle - \underset{u \in \Delta_n}{\text{min }}\langle Au, y\rangle = max\{\langle Ax, v\rangle - \langle Au, y\rangle | (u,v) \in \Delta_m \times \Delta_n\} \\ &= \text{max}\{\langle r_i, [x\text{ }y]^T \rangle | 1 \le i \le m + n\} \end{split} \end{eqnarray} is the primal-dual gap function and (r_i) = R := \begin{bmatrix}0\hspace{1.5em}A\\-A^T\hspace{.4em}0\end{bmatrix} \in \mathbb{R}^{(m+n)^2}. Thus G is a polyhedral convex function on \Delta_m \times \Delta_n. Note that G(x, y) \ge 0 for every pair of strategies (x, y) \in \Delta_m \times \Delta_n, with equality iff (x,y) \in \mathrm{Opt}(G). Also note that the elements of \mathrm{Opt}(G) are simply the Nash equilibria of the game.
Definition. For a given tolerance \epsilon > 0, we call a pair of strategies (x^*,y^*) \in \Delta_m \times \Delta_n a Nash \epsilon-equilibrium if G(x^*, y^*) \le \epsilon.
A remarkable result by [Andrew Gilpin et al.] (Lemma 3) says that for any matrix game, there exists a scalar \delta > 0 such that
\begin{eqnarray} \mathrm{dist}((x, y), \mathrm{Opt}(G)) \le \dfrac{G(x, y)}{\delta}, \forall (x, y) \in \Delta_m \times \Delta_n, \label{eq:weirdo} \end{eqnarray}
where \mathrm{dist}((x, y), \mathrm{Opt}(G)) := \mathrm{min}\{\|(u,v) - (x,y)\|| (u, v) \in \mathrm{Opt}(G)\} is the distance of (x, y) from \mathrm{Opt}(G). Using this bound in conjunction with Nesterov smoothing, the authors derived an \mathcal{O}\left(\left(\|A\| / \delta\right) ln\left(1 / \epsilon\right)\right) algorithm for computing a Nash \epsilon-equilibrium. Note however that, the suprimum of the \deltas veryfin \eqref{eq:weirdo} can be arbitrarily small in fact, we can explicitly construct games for which it is arbitrarily close to 0), and so the exponential speed may not be experienced empirically on some ill-conditioned games. To be continued...
No comments:
Post a Comment