Statement of the problem
Let $d$ and $c$ be positive integers and $q = dc$. Let $G$ be a $q$-by-$q$ positive semi-definite real matrix with eigenvalues all $\le 1$, and define the $q$-by-$2q$ matrix $A = [G\hspace{1em}\mathrm{I}_q - G]$, where $\text{I}_q$ is the $q$-by-$q$ identity matrix. Now, given a scalar $\kappa > 0$ and $d$ vectors $X_1, X_2, \ldots, X_d \in \mathbb{R}^c$, with $\|X_j\| \ne \kappa \; \forall j$, consider the $q$-by-$q$ block-diagonal matrix $D$ whose $j$th block, a $c$-by-$c$ matrix, is given by \begin{equation} D_j = \begin{cases}\text{I}_c - \frac{\kappa}{\|X_j\|}\text{proj}_{\langle X_j \rangle^\perp}, &\mbox{ if } \|X_j\| > \kappa,\\ 0, &\mbox{ otherwise,}\end{cases} \end{equation} where $\text{proj}_{\langle X_j \rangle^\perp} = \mathrm{I}_c - \mathrm{proj}_{\langle X_j\rangle} = \mathrm{I}_c - \frac{1}{\|X_j\|^2}X_jX_j^T$ is the projection onto the orthogonal complement of the $1$-dimensional subspace of $\mathbb{R}^c$ spanned by the vector $X_j$. Finally define the $2q$-by-$q$ matrix $B = [D\hspace{1em}\mathrm{I}_q-D]^T$. For example, if $c=1$, then each $D_j \in \{{0,1}\}$, a bit indicating whether $|X_j| > \kappa$, and $D$ is a diagonal matrix with $0$s and $1$s accordingly. Now define the $2q$-by-$2q$ matrix $F := BA$ (Or $F := AB$. To see this equivalence, note that $(BA)^{n+1} = B(AB)^nA$, for all $n \in \mathbb{N}$. Thus to study the "convergence" of $((BA)^n)_{n \in \mathbb{N}}$, it suffices to study the convergence of $((AB)^n)_{n \in \mathbb{N}}$. In fact, if $(AB)^n \rightarrow C$, then $(BA)^n \rightarrow BCA$.).Ultimately, I'm interested in the rate of convergence (in the sense of Definition 2.1 of this paper) of the sequence of matrix powers $(F^n)_{n\in\mathbb{N}}$. I can easily bound the spectral norm $r(F) \le \|F\| \le \|A\| \le 1$, but this turns out to be not very useful in my situation (e.g $\|A\|$ can be $1$). If I can compute the eigenvalues of $F$ (e.g in terms of the eigenvalues of $G$), then there is a fair chance I can apply the results of this paper to get rates of convergence for the aforementioned sequence.